વિધેય $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ વ્યાખ્યાયિત થાય છે તો $f(\theta )$ એ પરિમાણરહિત રાશિ હોવાથી જરૂરિયાત શું છે ?
કારણ કે $f(\theta)$ એ $\theta$ ની જુદી જુદી ધાતોનો સરવાળો છે તેથી $\theta$ એે પરિમાણરિત રાશિ છે. એકરૂપતાના સિદ્ધાંત પરથી સમીકરણની જમણીબાજુ પરિમાણરહિત છે તેથી ડાબી બાજુ પણ પરિમાણરહિત હોય.
એક ભૌતિક રાશી $x$ ને $M, L $ અને $ T$ ના સ્વરૂપમાં $x = M^aL^bT^c $ સૂત્રની મદદથી રજૂ કરવામાં આવે છે તો
$L,C$ અને $R$ અનુક્રમે ઇન્ડકટન્સ,કેપેસિટન્સ અને અવરોધ હોય,તો નીચેનામાંથી કોનું પરિમાણ આવૃત્તિના પારિમાણિક જેવુ નથી.
જો બળ $ (F),$ વેગ $(V)$ અને સમય $(T)$ ને મૂળભૂત એકમ તરીકે લેવામાં આવે, તો દળનું પરિમાણ શું થાય?
પ્લાન્ક અચળાંક $ (h),$ શૂન્યાવકાશમાં પ્રકાશની ઝડપ $c$ અને ન્યુટનનો ગુરુત્વાકર્ષી અચળાંક $(G) $ એમ ત્રણ મૂળભૂત અચળાંકો છે. નીચેનામાંથી કયુ સંયોજન લંબાઇના પરિમાણ જેવુ છે?
જો ${E}, {L}, {m}$ અને ${G}$ અનુક્રમે ઉર્જા, કોણીય વેગમાન, દળ અને ગુરુત્વાકર્ષણનો અચળાંક હોય, તો સૂત્ર ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ માં રહેલ રાશિ $P$ નું પરિમાણિક સૂત્ર કેવું થાય?