વિધેય $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ વ્યાખ્યાયિત થાય છે તો $f(\theta )$ એ પરિમાણરહિત રાશિ હોવાથી જરૂરિયાત શું છે ?
કારણ કે $f(\theta)$ એ $\theta$ ની જુદી જુદી ધાતોનો સરવાળો છે તેથી $\theta$ એે પરિમાણરિત રાશિ છે. એકરૂપતાના સિદ્ધાંત પરથી સમીકરણની જમણીબાજુ પરિમાણરહિત છે તેથી ડાબી બાજુ પણ પરિમાણરહિત હોય.
જો $R, X _{ L }$ અને $X _{ C }$ અનુક્રમે અવરોધ, ઈન્ડકટીવ રિએકટન્સ અને સંધારકીય રીએકટન્સ દર્શાવતા હોય, તો નીચેનામાંથી કયુ પરિમાણરહિત થશે ?
પ્લાન્ક અચળાંક $ (h),$ શૂન્યાવકાશમાં પ્રકાશની ઝડપ $c$ અને ન્યુટનનો ગુરુત્વાકર્ષી અચળાંક $(G) $ એમ ત્રણ મૂળભૂત અચળાંકો છે. નીચેનામાંથી કયુ સંયોજન લંબાઇના પરિમાણ જેવુ છે?